EFOMM 2024/2025: Matemática


Prof_Raimundo 7 days ago (edited)
1 views

Quais as relações entre a, b, c ∈ R*₊ , com a , b , c ≠ 1, a ≠ c e b ≠ 1/c para que a equação abaixo seja válida

loga(bc)β.logb(a/c)α.logcb = αβ[A - B + C - D],

em que

  • A=logc(a) . loga(b) . logb(a)
  • B=loga(b) . logb(c) . logc(a)
  • C=loga(c) . logc(a) . logb(a)
  • D=loga(c) . logb(c) . logc(a), tal que α,β ∈ R*.
  1. a + b = c
  2. a - b = 0
  3. a + b + c = 1
  4. c - 2b = 0
  5. 2a + 3c = 1

Resolução

Sabemos que uma das propriedades dos logaritmos é:

logba × logab = 1

Então:

A = logca . logab . logba
A = logca

B = logab . logbc . logca
B = (log b / log a) . (log c / log b) . (log a / log c) (mudança de base)
B = 1

C = logac . logca . logba
C = logba

D = logac . logbc . logca
D = logbc

Voltando pra equação pedida:

loga(bc)β.logb(a/c)α.logcb = αβ[A - B + C - D]
β.loga(bc).α.logb(a/c).logcb = αβ[A - B + C - D]
loga(bc).logb(a/c).logcb = A - B + C - D

loga(bc).logb(a/c).logcb = logca - 1 + logba - logbc
loga(bc).logb(a/c).logcb = logca/c + logba/c
loga(bc).logb(a/c).logcb = (logba/c / logbc) + logba/c
loga(bc).logb(a/c).logcb = logba/c (1/logbc + 1)
loga(bc).logcb = (1/logbc + 1)
loga(bc).logcb = logcb + 1
loga(bc) = 1 + 1/logcb
loga(bc) = 1 + logbc
loga(bc) = logbbc
loga(bc) = logabc / logab
1 = 1 / logab
logab = 1
a = b
a - b = 0

Gabarito: (B)

Comments • 0